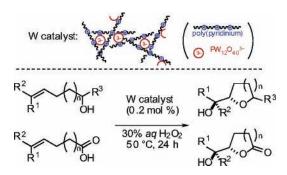
2007 Vol. 9, No. 8 1501–1504


Tightly Convoluted Polymeric Phosphotungstate Catalyst: An Oxidative Cyclization of Alkenols and Alkenoic Acids

Yoichi M. A. Yamada, Haiqing Guo, and Yasuhiro Uozumi*

Institute for Molecular Science (IMS), Myodaiji, Okazaki, Aichi 444-8787, Japan uo@ims.ac.jp

Received February 1, 2007

ABSTRACT

A tightly convoluted polymeric phosphotungstate catalyst was prepared via ionic assembly of $H_3PW_{12}O_{40}$ and poly(alkylpyridinium). An oxidative cyclization of various alkenols and alkenoic acids was efficiently promoted by the polymeric catalyst in aq H_2O_2 in the absence of organic solvents to afford the corresponding cyclic ethers and lactones in high yield. The catalyst was reused four times without loss of catalytic activity.

The development of immobilized catalysts exhibiting high aquacatalytic activity¹ and recyclability² has become an important topic in organic chemistry today.^{3,4} We have developed amphiphilic polymer resin-supported transition-

metal complexes and nanoparticles that catalyze various organic transformations in water under heterogeneous conditions. The Recently, we have also presented a novel self-assembling protocol for the preparation of solid-phase catalysts where metal species served as cross-linkers of non-cross-linked polymeric ligands as well as catalytically active centers. Thus, for example, an ionically cross-linked polymeric phosphotungstate catalyst PWAA was prepared via salt formation of $PW_{12}O_{40}^{3-}$ with poly $\{[3-(acryolylamino)propyl]dodecyldimethylammonium nitrate <math>\}$ -co-(N-iso-

⁽¹⁾ For reviews, see: (a) Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley-VCH: New York, 1997. (b) Grieco, P. A. Organic Synthesis in Water; Kluwer Academic Publishers: Dordrecht, 1997. (c) Herrmann, W. A.; Kohlpaintner, C. W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1524.

⁽²⁾ For reviews, see: (a) Bailey, D. C.; Langer, S. H. Chem. Rev. 1981, 81, 109. (b) Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis 1997, 1217. (c) Shuttleworth, S. J.; Allin, S. M.; Wilson, R. D.; Nasturica, D. Synthesis 2000, 1035. (d) Dörwald, F. Z. Organic Synthesis on Solid Phases Wiley-VCH: Weinheim, 2000. (e) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3815. (f) Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217. (g) McNamara, C. A.; Dixon, M. J.; Bradley, M. Chem. Rev. 2002, 102, 3275. (h) Frenzel, T.; Solodenko, W.; Kirschning, A. In Polymeric Materials in Organic Synthesis and Catalysis; Buchmeiser, M. R., Ed.; Wiley-VCH: Weinheim, 2003; p 201. (i) Leadbeater, N. E. Chem. Commun. 2005, 2881. (j) Bai, L.; Wang, J.-X. Curr. Org. Chem. 2005, 9, 535. (k) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.

⁽³⁾ For general reviews on green chemistry, see: (a) Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*; Oxford Univ. Press: Oxford, 1998. (b) *Green Chemical Syntheses and Processes: Recent Advances in Chemical Processing*; Anastas, P. T., Heine, L. G., Williamson, T. C., Ed.; Am. Chem. Soc.: Ohio, 2001. (c) Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. *Pure Appl. Chem.* **2000**, *72*, 1207.

⁽⁴⁾ For reviews on polymeric aquacatalysts, see: (a) Uozumi, Y. *J. Synth. Org. Chem. Jpn.* **2002**, *60*, 1063. (b) Uozumi, Y. *Top. Curr. Chem.* **2004**, 242, 77.

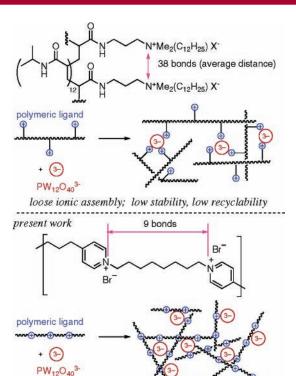
propylacrylamide)₁₂}, a main chain of poly(*N*-isopropylacrylamide) bearing branched ammonium cation parts (Figure 1, top). 10 The polymeric phosphotungstate PWAA catalyzed the oxidation of alkenes, amines, and sulfides; however, it could not be sufficiently recycled presumably due to its physical fragility. More rigid assembling of the cationic polymer with the phosphotungstate anion might provide more stable polymeric catalysts. Here we would like to report the amphiphilic pyridinium polymer 1 bearing main-chain cationic groups constructed with a tightly convoluted pyridinium phosphotungstate salt which exhibited high catalytic activity and recyclability for oxidative cyclization of alkenols and alkenoic acids (Figure 1, bottom). The polymeric pyridinium phosphotungstate was found to catalyze the oxidative cyclization of a wide variety of (E)- and (Z)-alkenols as well as (E)- and (Z)-alkenoic acids with high stereospecificity in aqueous hydrogen peroxide under organic solvent-free conditions and was reused four times without loss of catalytic activity.

A polymeric tungsten catalyst was readily prepared from poly[1,8-dibromooctane-co-1,3-di(4-pyridyl)propane] (1)¹¹ with $\rm H_3PW_{12}O_{40}$ (2)¹² according to the preparation of

(5) For aquacatalytic reactions with amphiphilic resin-supported transition-metal complexes, see: (a) Uozumi, Y.; Danjo, H.; Hayashi, T. Tetrahedron Lett. 1997, 38, 3557. (b) Danjo, H.; Tanaka, D.; Hayashi, T.; Uozumi, Y. Tetrahedron 1999, 55, 14341. (c) Uozumi, Y.; Danjo, H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384. (d) Uozumi, Y.; Watanabe, T. J. Org. Chem. 1999, 64, 6921. (e) Shibatomi, K.; Nakahashi, T.; Uozumi, Y. Synlett 2000, 1643. (f) Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997. (g) Uozumi, Y.; Nakazono, M. Adv. Synth. Catal. 2002, 344, 274. (h) Uozumi, Y.; Kimura, T. Synlett 2002, 2045. (i) Uozumi, Y.; Kobayashi, Y. Heterocycles 2003, 59, 71. (j) Nakai, Y.; Uozumi, Y. Org. Lett. 2005, 7, 291. (k) Uozumi, Y.; Kikuchi, M. Synlett 2005, 1775. (l) Nakai, Y.; Kimura, T.; Uozumi, Y. Synlett 2006, 3065. (m) Uozumi, Y.; Suzuka, T.; Kawade, R.; Taknaka, H. Synlett 2006, 2109.

(6) For aquacatalytic reactions with amphiphilic resin-supported nanometal particles, see: (a) Uozumi, Y.; Nakao, R. Angew. Chem., Int. Ed. 2003, 42, 194. (b) Nakao, R.; Rhee, H.; Uozumi, Y. Org. Lett. 2005, 7, 163. (c) Yamada, Y. M. A.; Uozumi, Y. Org. Lett. 2006, 8, 1375. Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. Angew. Chem., Int. Ed. 2007, 46, 704.

(7) For asymmetric aquacatalytic reactions with chiral amphiphilic resinsupported transition-metal complexes, see: (a) Uozumi, Y.; Danjo, H.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8303. (b) Uozumi, Y.; Shibatomi, K. J. Am. Chem. Soc. 2001, 123, 2919. (c) Hocke, H.; Uozumi, Y. Synlett 2002, 2049. (d) Uozumi, Y.; Tanaka, H.; Shibatomi, K. Org. Lett. 2004, 6, 281. (e) Hocke, H.; Uozumi, Y. Tetrahedron 2003, 59, 619. (f) Heiko, H.; Uozumi, Y. Tetrahedron 2004, 60, 9297. (g) Uozumi, Y.; Kimura, M. Tetrahedron: Asymmetry 2006, 17, 161. (h) Kobayashi, Y.; Tanaka, D.; Danjo, H.; Uozumi, Y. Adv. Synth. Catal. 2006, 348, 1561. (i) Uozumi, Y.; Suzuka, T. J. Org. Chem. 2006, 71, 8644.


(8) For a review, see: Yamada, Y. M. A. *Chem. Pharm. Bull.* **2005**, *53*,

(9) (a) Yamada, Y. M. A.; Ichinohe, M.; Takahashi, H.; Ikegami, S. *Tetrahedron Lett.* **2002**, *43*, 3431. (b) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. *Org. Lett.* **2002**, *4*, 3371. (c) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. *Tetrahedron Lett.* **2003**, *44*, 2379. (d) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. *J. Org. Chem.* **2003**, *68*, 7733. (e) Yamada, Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. *Tetrahedron* **2004**, *60*, 4087. (f) Yamada, Y. M. A.; Maeda, Y.; Uozumi, Y. *Org. Lett.* **2006**, *8*, 4259.

(10) (a) Yamada, Y. M. A.; Ichinohe, M.; Takahashi, H.; Ikegami, S. Org. Lett. 2001, 3, 1837. (b) Yamada, Y. M. A.; Tabata, H.; Takahashi, H.; Ikegami, S. Synlett 2002, 2031. (c) Yamada, Y. M. A.; Tabata, H.; Ichinohe, M.; Takahashi, H.; Ikegami, S. Tetrahedron 2004, 60, 4097. (d) Hamamoto, H.; Suzuki, H.; Yamada, Y. M. A.; Tabata, H.; Takahashi, H.; Ikegami, S. Angew. Chem., Int. Ed. 2005, 44, 4536.

(11) Jegal, J.; Kim, J.-H.; Park, Y.-I.; Lee, K.-H. J. Appl. Polym. Sci. 1994, 54, 65.

(12) (a) Misono, M. Chem. Commun. **2001**, 1141. (b) Mizuno, N.; Misono, M. Chem. Lett. **1987**, 967. (c) Okuhara, T. Chem. Rev. **2002**, 102, 3641.

tight ionic convolution; high stability, high recyclability

Figure 1. Assembly of $H_3PW_{12}O_{40}$ and an amphiphilic copolymer with a branched ligand (top) and a tight assembly of $H_3PW_{12}O_{40}$ and a main-chain pyridinium polymer (bottom).

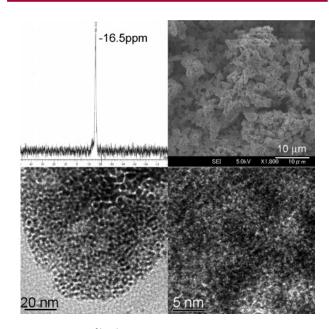
[π -C₅H₅N(CH₂)₁₅CH₃]₃PW₁₂O₄₀.¹³ Thus, when an aqueous solution of **2** was added to an aqueous solution of **1** at 25 °C, the ionic components assembled to give the polymeric salt **3** as a white powder (83% yield), which was insoluble in water, ethanol, ethyl acetate, tetrahydrofuran, dichloromethane, toluene, and hexane (Scheme 1).¹⁴

The polymeric phosphotungstate **3** was unambiguously characterized by spectro- and microscopic studies (MAS 31 P- 1 H} NMR, IR spectroscopy, elemental analysis, TEM, SEM, and EDS). Typical data are shown in Figure 2. MAS 31 P- 1 H} NMR of the polymeric **3** showed a narrow singlet resonance at $^{-1}$ 6.5 ppm that was identical to a phosphorus resonance of PW $_{12}$ O $_{40}$ ³⁻. 15,16 High-resolution TEM analysis of **3** revealed that the phosphotungstate clusters were uniformly dispersed throughout the polymer matrix having a diameter of ca. 1 nm, which is consistent with the size of

1502 Org. Lett., Vol. 9, No. 8, 2007

⁽¹³⁾ Ishii, Y.; Yamawaki, K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. *J. Org. Chem.* **1988**, *53*, 3587.

⁽¹⁴⁾ Preparation of 3: To an aqueous solution (30 mL) of poly[1,8-dibromooctane-co-1,3-di(4-pyridyl)propane] (1) (148 mg, 0.63 mmol of a pyridinium unit) was added an aqueous solution (70 mL) of $\rm H_3PW_{12}O_{40}$ 2 (608 mg, 0.21 mmol) at 25 °C, and the resulting colorless suspension was stirred for 3 days at the same temperature. The precipitates were collected by filtration, washed with water, and dried at 5 Pa for 12 h to give 3 (624 mg, 83%) as a colorless powder.


⁽¹⁵⁾ Okuhara, T.; Watanabe, H.; Nishimura, T.; Inumaru, K.; Misono, M. Chem. Mater. **2000**, *12*, 2230.

^{(16) (}a) Ishii, Y.; Tanaka, H.; Nishiyama, Y. *Chem. Lett.* **1994**, 1. (b) Massart, R.; Contant, R.; Fruchart, J.-M.; Ciabrini, J.-P.; Fournier, M. *Inorg. Chem.* **1977**, *16*, 2916.

Scheme 1. Preparation of a New-Generation Self-Assembled Polymeric Tungsten Catalyst^a

^a **1** (3 mol equiv of a pyridinium), **2** (1 mol equiv), water, 25 °C, 3 days.

monomeric $PW_{12}O_{40}^{3-}$. The NMR and TEM observations indicate the integrity of the monomeric structure of $PW_{12}O_{40}^{3-}$, whereas a similar phosphotungstate $Cs_{2.5}H_{0.5}PW_{12}O_{40}$ is known to form an aggregated tertiary structure (($Cs_{2.5}H_{0.5}-PW_{12}O_{40}$) $_n$; $\phi=100-500$ nm). Parameter An SEM image of 3 confirmed its dendroidal surface. The polymeric phosphotungstate 3 was expected to exhibit good catalytic performance owing to the immense surface area of the convoluted composite 3 and the monomeric structure of the phosphotungstate cluster.

Figure 2. MAS $^{31}P\{^{1}H\}$ NMR (top, left), SEM (top, right; bar length = 10 μ m), and TEM (bottom; left, bar length = 20 nm; right, bar length = 5 nm) images of the solid-phase catalyst 3.

The aquacatalytic potential of the novel polymeric phosphotungstate 3 was examined for the oxidative cyclization

Table 1. Oxidative Cyclization of Alkenols and Alkenoic Acids Catalyzed by 3^a

R ²	· \ /n	vst 3 (0.2 mol %)	R^1 R^3
R ¹	4a-g OH 30% aq	H ₂ O ₂ , 50 °C, 24 h	HO R ² 5a-g
entry	substrate	product	yield
		_	(%)
1	c н $_3$ v он $4a$	CH ₃	5a
2	C_2H_5 OH 4b	C ₂ H ₅	98 5b
3	C_5H_{11} OH $4c$	C ₅ H ₁₁) 5c
4	(2nd use)		99
5		rd use)	99
6	(4th use)		94
7	(5th use)		99
8	(6	th use)	94 ^b
9	C_2H_5 Q_4 OH 4d	C ₂ H ₅	74 5d
10°	C ₅ H ₁₁	C ₅ H ₁₁	5e 82
11	C ₅ H ₁₁ OH 4	C ₅ H ₁₁	5f 86 (1:1) ^d
12	C_5H_{11} OH $\mathbf{4g}$	C ₅ H ₁₁ HO	5g 82 (1:1) ^d

 a All reactions were performed in the presence of **4** (1 mol equiv), 30% aq H₂O₂ (2.5 mol equiv), and **3** (0.2 mol % of phosphotungstate) at 50 °C for 24 h. b The catalyst was reused after being stored for 6 months. c **3** (0.4 mol %); aq H₂O₂ (3.5 mol equiv); reaction time, 35 h. d Diastereomeric ratio.

of alkenols with aqueous hydrogen peroxide (Table 1) producing furanyl and pyranyl carbinols, which are the key components of biologically active compounds. Although only homogeneous transition-metal catalysts have been developed for oxidative cyclizations so far, the development of immobilized solid-phase catalysts still remains a major

Org. Lett., Vol. 9, No. 8, 2007

^{(17) (}a) Keggin, J. F. *Proc. R Soc. London, Ser. A* **1934**, *144*, 75. (b) Brown, G. M.; Noe-Spirlet, M.-R.; Busing, W. R.; Levy, H. A. *Acta. Cryst. B* **1977**, *33*, 1038.

⁽¹⁸⁾ Alali, F. Q.; Liu, X.-X.; Mclaughlin, J. L. J. Nat. Prod. 1999, 62, 504.

^{(19) (}a) Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J. Am. Chem. Soc. 1978, 100, 2933. (b) Fukuyama, T.; Wang, C.-L. J.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260. (c) Wuts, P. G. M.; D'Costa, R.; Butler, W. J. Org. Chem. 1984, 49, 2582. (d) Still, W. C.; Romero, A. G. J. Am. Chem. Soc. 1986, 108, 2105. (e) Evans, D. A.; Polniaszek, R. P.; Devries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem. Soc. 1991, 113, 7613. (f) Sinha, S.; Sinha-Bagchi, A.; Keinan, E. J. Am. Chem. Soc. 1995, 117, 1447. (g) Towne, T. B.; McDonald, F. E. J. Am. Chem. Soc. 1997, 119, 6022. (h) Wang, Z.-M.; Tian, S.-K.; Shi, M. Tetrahedron Lett. 1999, 40, 977.

⁽²⁰⁾ For reviews, see: (a) Hartung, J.; Greb, M. *J. Organomet. Chem.* **2002**, *661*, 67. (b) Koert, U. *Synthesis* **1995**, 115. (c) Boivin, T. L. B. *Tetrahedron* **1987**, *43*, 3309. Ishii and co-authors reported one entry of the oxidative cyclization catalyzed by $([C_5H_5N^+(CH_2)_{15}CH_3]_3\{PO_4[W(O)^-(O_2)_2]_4\}^3^-)$, where the 5-exo/6-endo cyclization selectivity was 2:1. See: (d) Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. *J. Org. Chem.* **1996**, *61*, 5307.

challenge in terms of catalytic activity and recyclability.²¹ When the oxidations of the cis-alkenols, (Z)-4-hexen-1-ol (4a), (Z)-4-hepten-1-ol (4b), and (Z)-4-decen-1-ol (4c), were carried out with 3 (0.2 mol % of $PW_{12}O_{40}^{3-}$) in 30% aqueous H₂O₂ at 50 °C, we were pleased to find that the threo-1-(2tetrahydrofuranyl)alkanols **5a-c** were obtained in 92–98% yield with complete diastereoselectivity (entries 1-3). The cyclization of (Z)-5-octen-1-ol (4d) proceeded smoothly to give the threo-tetrahydropyranyl alcohol 5d in 74% yield (entry 9). (E)-4-Decen-1-ol (4e) also underwent the cyclization to give the *erythro*-product **5e** in 82% yield (entry 10). These stereochemical observations indicate that the cyclization involves a stereospecific reaction pathway. The secondary alcohols 4f and 4g were converted to the corresponding threo-tetrahydrofuranols 5f and 5g in 86% and 82% yield, respectively, without control of the stereochemistry at the C5-position of the tetrahydrofuran (entries 11 and 12).²²

Recycling experiments of the insoluble catalyst 3 were examined in the oxidative cyclization of 4c (entries 3–7). Thus, the first use of the catalyst afforded 5c in 92% yield. After being recovered by filtration, washed with water, and dried in vacuo, the catalyst was reused to give 5c in quantitative yield. To our delight, the third, fourth, and fifth uses of the recovered catalyst also provided 5c in 99%, 94%, and 99% yields, respectively. After the fifth use (entry 7), the recovered catalyst was stored for 6 months under atmospheric conditions at ambient temperature and then subjected to the sixth run (entry 8) to give 94% yield of 5c.

Alkenoic acids were also suitable substrates for the oxidative cyclization (Scheme 2). Thus, the oxidative cyclization of (Z)-4-heptenoic acid (6a), (Z)-6b, and (E)-4-decenoic acid 6c under similar conditions proceeded stereospecifically to afford the corresponding lactones 7a-c in 75-85% yield. By using this catalytic system, L-factor

(leucomycin-inducing factor) **7b**, isolated from *Streptomyces griseus*, ²³ was obtained in 85% yield.

7c: 83%

In conclusion, the novel tightly convoluted polymeric phosphotung state cluster catalyst $\bf 3$ was readily prepared via the ionic self-assembly process of a main-chain polypyridinium and phosphotung stic acid. It is noteworthy that this polymeric catalyst effectively catalyzed the oxidative cyclization of a variety of alkenols and alkenoic acids in aqueous $\rm H_2O_2$ under organic solvent-free conditions. The insoluble catalyst was reused without any loss of catalytic activity. Extension of this catalytic system to other organic transformations as well as its application to the synthesis of natural products are currently in progress.

Acknowledgment. This work was supported by the CREST program, sponsored by the JST. We also thank the JSPS (Grant-in-Aid for Scientific Research, no. 15205015 and no. 16790025) and the MEXT (Scientific Research on Priority Areas, no. 460) for partial financial support of this work. We are thankful to Dr. Satoru Nakao (IMS) for his help in measuring SEM, which is supported by the Nanotechnology Support Project (MEXT) and managed by the IMS

Supporting Information Available: Experimental details, as well as NMR, SEM, and GC-MS data. This material is available free of charge via the Internet at http://pubs.acs.org. OL070258V

1504 Org. Lett., Vol. 9, No. 8, 2007

⁽²¹⁾ For recent examples of development, see: (a) Bhaumik, A.; Tatsumi, T. *J. Catal.* **2000**, *189*, 31. (b) Ichihara, J.; Kambara, A.; Iteya, K.; Sugimoto, E.; Shinkawa, T.; Takaoka, A.; Yamaguchi, S.; Sasaki, Y. *Green Chem.* **2003**, *5*, 491.

⁽²²⁾ According to Mizuno and Misono's studies (ref 12), we speculate the reaction pathway of the present oxidative cyclization should proceed via the epoxidation of the alkene (4 or 6) with peroxotungstate generated in situ and subsequent oxirane ring opening with the intramolecular oxygen nucleophile to afford the product (5 or 7).

⁽²³⁾ Grafe, U.; Eritt, I. J. Antibiot. 1983, 36, 1592.